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SUMMARY 
In the present work a new iterative method for solving the Navier-Stokes equations is designed. In a 
previous paper a coupled node fill-in preconditioner for iterative solution of the Navier-Stokes equations 
proved to increase the convergence rate considerably compared with traditional preconditioners. The 
further development of the present iterative method is based on the same storage scheme for the equation 
matrix as for the coupled node fill-in preconditioner. This storage scheme separates the velocity, the pressure 
and the coupling of pressure and velocity coefficients in the equation matrix. The separation storage scheme 
allows for an ILU factorization of both the velocity and pressure unknowns. With the inner-outer solution 
scheme the velocity unknowns are eliminated before the resulting equation system for the pressures is 
solved iteratively. After the pressure unknown has been found, the pressures are substituted into the original 
equation system and the velocities are also found iteratively. The behaviour of the inner-outer iterative 
solution algorithm is investigated in order to find optimal convergence criteria for the inner iterations and 
compared with the solution algorithm for the original equation system. The results show that the coupled 
node fill-in preconditioner of the original equation system is more efficient than the coupled node fill-in 
preconditioner of the reduced equation system. However, the solution technique of the reduced equation 
system reveals properties which may be advantageous in future solution algorithms. 
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INTRODUCTION 

The need for an efficient Navier-Stokes solver has been demonstrated in many research areas. 
Great efforts in research and development have been made in areas such as ~ceanography,’-~ 
aerodynamics4*’ and haemodynamics6-8 as well as in general fluid dynamics. As progress has 
been made in designing efficient algorithms for generating me she^^.^ around arbitrary bodies, 
attention has focused on designing large-scale algorithms for solving the Navier-Stokes equa- 
tions. 

For large problems the use of direct equation solvers is prohibitive owing to both the large 
storage required and the computations1 time necessary for solving the problem.’ Iterative 
methods have compared with direct solvers, since only coefficients in the 
equation matrix different from zero are stored. However, the success of most iterative equation 
solvers seems to depend on using a good preconditioner. 

Several iterative equation solvers for non-symmetric equation systems are available.I6 In this 
work the BGCGSTAB method of Van der V ~ r s t ” * ’ ~  has been selected. Various preconditioning 
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methods for iterative equation solvers for flow problems have been subjected to extensive 
studies.’ 2-14*19 In the present work the linear equation solver has been tested with the ILU 
preconditioner with coupled fill-in for both Stokes and the Navier-Stokes equations. The mixed 
finite element formulation of the Navier-Stokes equations, first described by Taylor and Hood,” 
has been chosen. This mixed element method has certain advantages compared with the penalty 
method, since it does not introduce ‘checker-board’ pressure variations which could well occur 
with the penalty method. 

In the present work the new incomplete LU preconditioner with coupled fill-in is designed 
specially for preconditioning the inner-outer formulation of the Navier-Stokes equations. This 
preconditioner permits fill-in at certain predefined locations in the pressure coefficient matrix 
rather than allowing fill-in when the size of the fill-in coefficients exceed a certain limit. Since 
the locations of the fill-in are predefined, the housekeeping during the factorization process is 
considerably reduced. These predefined locations are at the locations in the pressure matrix 
where the corner nodes are coupled. The corner nodes are coupled if they belong to the same 
finite element. 

In the inner-outer iteration algorithm the inner iterations are preconditioned by incomplete 
LU factorization of the velocity matrix and the outer iterations are preconditioned by incomplete 
LU factorization of the coupled fill-in pressure matrix. 

FINITE ELEMENT FORMULATION 

The Stokes equations are linear and are given by 

- V . v = O  i nR ,  (2) 

where v is the velocity vector, p is the pressure and p is the viscosity coefficient. The first equation 
is the equation of motion which contains a diffusion and a pressure gradient term. The second 
equation is the equation of continuity. A minus sign is introduced in the continuity equation in 
order to obtain the same sign for the pressure gradient as for the continuity equation in the 
finite element formulation. In the finite element formulation the velocities are approximated by 
quadratic polynomials and the pressure by linear polynomials to satisfy the Babuska-Brezzi 
condition. Denote the quadratic polynomials N i  and the linear polynomials L,. Then by the 
Galerkin residual method and integration by parts the finite element formulation of the equation 
system becomes 

Vv dR + J1, NiVp dR - 
(3) 

The non-linear Navier-Stokes equations are given by 

-pV2v + v - V v  + Vp = 0 in R, (4) 

- V * v = O  i n n ,  ( 5 )  

where v is the velocity vector, p is the pressure and p is the viscosity coefficient. In the 
Navier-Stokes equations an additional non-linear term is included in the equation of motion 
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compared with the Stokes equations. The finite element formulation of the Navier-Stokes 
equations is obtained similarly as for the Stokes equations: 

F, = 11, pVNi - Vv dR + Jfi pNiv  - Vv dR + In NiVp dR - Irn p N i  - dbR = 0, 
aV 
a n  (6) 

F, = - LiV.VdR = 0. s, 
Instead of introducing a minus sign in the continuity equation, the pressure terms could be 
integrated by parts. A fully symmetric equation matrix could then be obtained for the Stokes 
equations. However, a different boundary condition 

would then appear on the right-hand side. Since the pressure is not known on external 
boundaries, numerical difficulties are introduced in computing these pressure boundary condi- 
tions. The non-symmetry, however, in the present formulation is only occurring at those 
boundaries where the Dirichlet boundary conditions are not specified. For the Navier-Stokes 
equations the equation matrix is not symmetric anyway, so the slight non-symmetry in the 
pressure gradient continuity terms is probably of minor importance. 

NEWTON FORMULATION 

The Navier-Stokes equation has one non-linear term, the convective acceleration, which requires 
a non-linear iterative solution procedure. The non-linear formulation chosen is the Newton 
method, which is known to have a second-order convergence rate. The Navier-Stokes equations 
(6) then have to be differentiated and the linear equation system which has to be solved at each 
Newton step is 

If the initial solution yo, po is chosen close enough to the final solution, convergence is 
guaranteed. The initial solution is chosen to be the Dirichlet boundary conditions where these 
are known and zero elsewhere. The solution is then updated at each Newton step with the 
correction found by solving (8): 

(9) 

(10) 

= n v + x,, 

pn+l = p" + x,. 

The number of Newton steps to obtain a converged solution is usually of the order of 5-10 
depending on the convergence criterion required. 

The Newton method for non-linear equation systems can also be applied favourably to the 
linear Stokes equations. For linear equation systems only one Newton iteration is required. The 
advantage of a Newton formulation for linear equation systems appears when introducing the 
Dirichlet boundary conditions. The columns and rows in the equation matrix can then be zeroed 
with a one on the corresponding diagonal and a zero on the right-hand side. The Dirichlet value 
is included in the initial guess of the solution vector. The application of Dirichlet boundary 
conditions in the original equation matrix would be more complicated to maintain the 



1138 S. 0. WILLE 

advantageous symmetric property, since the Dirichlet condition multiplied by the corresponding 
column vector has to be subtracted from the right-hand side. 

STRUCTURE OF THE EQUATION MATRIX 

The finite element formulation of the system of equations (8) which is solved in the Newton 
process may be written in the form 

QX = b, (1 1) 

where 

For the Stokes problem x, and x p  contain the node values of the velocity components and 
pressure respectively. For the Navier-Stokes problem they contain the Newton corrections of 
the same quantities. the storage of the matrix Q is important when an iterative equation solver 
is used. For large problems only non-zero coefficients should be stored. Several storage schemes 
exist for storing sparse matrices. If the grid is regular, the different diagonals can be stored as 
one-dimensional vectors." For irregular grids a more complex pointing structure is used to 
identify the rows and coefficients in the matrix used. When solving Navier-Stokes problems on 
irregular grids, a special storage scheme believed to have several advantages has been developed 
(Figures 1 and 2). Figure 1 shows the structure of the matrix Q for a simple two-dimensional 
grid consisting of two triangular elements. The upper part of the figure shows the grid and the 
enumeration of nodes. The corner nodes are numbered first. This way of numbering is obtained 
by the unstructured grid generation algorithm given by Willeg and is advantageous both in 
storing the matrix and during incomplete LU preconditioning. The indices above and to the 
left of the matrix shown in the lower part of Figure 1 refer to the node numbers. The equation 
matrix has non-zero coefficients at locations where two nodes are coupled in the grid. Two 
nodes are said to be coupled if they belong to the same finite element. For example, in the grid 
in Figure 1 nodes 1 and 5 are coupled while nodes 2 and 9 are not. The equation system is 
symmetric in shape. The matrix A contains the coefficients associated with the velocity degrees 
of freedom. The upper and lower parts of the submatrices of A are stored in separate 
one-dimensional vectors U and L as shown in Figure 2. This splitting is advantageous during 
the preconditioning, since the lower triangular part is accessed by columns and the upper 
triangular part is accessed by rows during factorization. The pointing structure has two pointing 
vectors; the first, PAC, points to where the node numbers for corresponding rows are stored in 
the other pointing vector, PAR. Let 'dim' be the spatial dimension for the sytem of differential 
equations; then the dimension of each of the submatrices Aij is [dim x dim]. The position of 
each of these submatrices in both U and L is then easily calculated from the corresponding 
index in the vector PAR. Corresponding pointing structures are established for the matrices B, 
C and P. The matrix P is initially zero, but fill-in will occur during the ILU preconditioning. 
The dimension of B, is [dim x 1) and that of C, is [l x dim]. The locations of the submatrices 
B, and Cij are also easily calculated from the index in the pointing vector PBCR. The fill-in in 
the submatrices for the pressure P, consists of simple scalars. The pointing structure for the 
matrix P is equal to the first elements, which correspond to the pointing structure for the corner 
nodes of the matrices B and C. The pointing structure for the matrices B and C can then also 
be used for addressing the matrix P. The right-hand-side and solution vectors. b, and x, can 
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Figure 1. The upper part of the figure shows a simple two-dimensional grid consisting of two elements. In this grid the 
corner nodes are numbered first, then the mid-edge nodes. The structure of the corresponding equation matrix is shown 
below. The numbers at the top and to the left of the matrix are node numbers. The matrix P is initially zero and is 

used in the ILU preconditioning fill-in 
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Figure 2. The equation matrix is stored as five one-dimensional vectors. The zero submatrices shown in Figure 1 are 
not stored. The storage structure requires two pointing vectors, one pointing to where each row begins in the vector 
which contains the nodes included in that row. The upper part U and the lower part L of A are stored in separate 
vectors. The same pointing structure can then be used for both U and L. Similarly, the same pointing structure is used 

for B and C. Note that the first part of the pointing structure for B and C can also be used for P 
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also be considered to consist of subvectors bVi and xVi with dimension [dim x 11. These 
subvectors will represent the right-hand side and the solution at node i. The vectors b, and x, 
consist of scalars bpi and xpi which are the right-hand side of the continuity equation and the 
pressure at node i. All the submatrices A,, B, and Cij are stored row-by-row. 

An important point to notice is that for the Navier-Stokes equations all the coefficients in 
the submatrices Aij are non-zero. However, for the Stokes problem there are only non-zero 
coefficients on the diagonals of Aij. This implies that only the diagonals of Aij need to be stored 
for the Stokes equations. 

INNER-OUTER FORMULATION 

For the linear Newton equation system (8) the equation system to be solved can be written as 

By multiplication the equivalent equation system is 

AX, + Bx, = b,, 

CX" = b,. 
(14) 

By elimination of x, in the above equation ssytem the inner-outer formulation is obtained. First 
the pressure unknown is found from 

CA - 'Bx, = CA - b, - b,. 

AX, = b, - Bx,. 

(15) 

Then solve for the velocity unknowns in the equation system 

(16) 

Both these equation systems can be solved by iterative equation solvers. For the first equation 
system (15) there will be both an outer and an inner iteration. In the inner iterations an equation 
system is also solved iteratively. 

In all iterative equation solver algorithms a matrix-vector product has to be computed. The 
matrix-vector product 

q = CA-'BU (17) 

for the pressure equation (15) is determined by first solving 

AW = BU (18) 

and then calculating 

q = c w .  (19) 

The inner equation system (18) is also solved iteratively. As seen from the Newton formulation 
(8), the original equation system is not positive definite. This will require high robustness of the 
linear iterative equation solver. However, positive definiteness is obtained in the reduced 
equation system (1 5). 
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LINEAR EQUATION SOLVER 

In a previous paper2* two linear equation solvers were tested. The truncated Orthomin method23 
with 10 search direction vectors and the Bi-CGSTAB method of Van der Vor~t . '~* ' '* '~  The 
latter method is a new varient of Bi-CG and has to some extent less irregular convergence 
behaviour than the CG-S method. When comparing the performance of Orthomin and 
CGSTAB, the CGSTAB method proved to require less work and was more stable than the 
Orthomin method for both the Stokes and the Navier-Stokes equations. In the present work 
only the CGSTAB method is therefore used. 

Let 11 (1 be the Euclidean norm. When solving the entire equation system Qx = b, the following 
convergence criterion for the linear equation solvers was used: 

where r = b - Qji is the residual of the computed approximate solution j Z  of the system Qx = b. 

iterations was 
For the non-linear Navier-Stokes equations the convergence criterion for the Newton 

where Ax is the Newton update and x is the solution of the equation system. 

used. For the inner iteration (18) Aw = Bu the convergence criterion 
In the inner-outer algorithm two convergence criteria for the iterative equation solver were 

where the residual r, = Bu - Aii and ii is the approximate solution to Aw = Bu, was used. For 
the outer iteration (15) the convergence criterion used was 

where the residual rp = CA-lb, - b, - CA-lBjZ, and 2, is the approximate solution to 

The non-linear Newton convergence criterion E, is the same as when iterating on the original 
CA-'Bx, = CA-lb, - b,. 

equation system Qx = b. 

PRECONDITIONING 

Let M be a non-singular matrix. The original equation system Qx = b can be replaced with 
M-'Qx = M-'b, where M-'  is the preconditioning matrix. The quality of the preconditioner 
depends very much on the choice of M. The preconditioning matrix M should have the following 
properties: M is a good approximation to Q, M is easily computed, M is reasonably sparse and 
equations of the form Mx = c are easily solved. 
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The original equation system 

Several preconditioners have been investigatedz2 for preconditioning the equation system 

QX = b. (24) 

The preconditioners tested were modified diagonal preconditioning, SSOR preconditioning, ILU 
preconditioning of the velocity equations, ILU preconditioning with coupled fill-in for the entire 
equation system and ILU preconditioning with coupled fill-in for the symmetric part of the 
entire equation system. The results of these experiments showed that the ILU preconditioning 
with coupled fill-in for the symmetric part of the entire equation system was the most efficient. 
In the present work only this preconditioner was therefore used. 

Incomplete LU factorization on the symmetric part of the complete matrix Q, 

Q + QT 

Q"=-F- 
(see Figure l), can be performed if certain fill-ins are accepted. These fill-ins are associated with 
the pressure and correspond to the matrix P given in Figure 1. Using the previous definition of 
coupled nodes, the submatrices Aij are updated during the forward elimination of the matrix A 
if the two nodes ij are coupled in the element graph. The same philosophy is applied to the 
fill-ins in the pressure matrix P. Let nodes i and j be corner nodes; then the fill-in P, are accepted 
if the nodes i j  are coupled. The general algorithm for forward and backward substitution is 
given in Dahl and Wille.22 In this algorithm an inversion of the submatrices A,, on the diagonal 
is included. As mentioned earlier, when the Stokes equations are considered, only the diagonals 
of these submatrices need to be stored. When using the Stokes equations as preconditioner, 
fill-in will never occur outside this diagonal. The inversion of the diagonal submatrices for the 
Stokes preconditioner will therefore only consist of inverting the diagonals in these submatrices. 
The preconditioning matrix of this preconditioner, ILU", then becomes 

M = eSV. (26) 

In this work the matrix Q corresponding to the Stokes problem has been used when computing 
the preconditioning matrix M. Hence it has not been necessary to compute a new preconditioning 
matrix for each Newton step. Here the lower part of Q", 0, has unit diagonal and it was observed 
that the diagonal elements of v, corresponding to the zero block matrix in the lower right 
corner of Q', were all negative and of the same order of magnitude. Let M = Q" and M- ' be 
the matrix obtained by incomplete factorization with coupled fill-in then the equation system 
Qx = b can be preconditioned and the equation system to be solved is 

M-'Qx = M-'b. (27) 

The reduced equation system 

In the reduced equation system both the inner and the outer iteration can be preconditioned 
by a suitable matrix. Let N be the part of A corresponding to the Laplacian operator and N-' 
be the matrix obtained by incomplete factorization of N. Then in the inner iteration the equation 
system 
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can be preconditioned with 

N-'Aw = N-'v. (29) 
The outer equation system, the pressure equation (15), can be preconditioned similarly. Let P- ' 
be the matrix which is obtained by incomplete factorization with coupled fill-in in the pressure 
matrix. The preconditioned pressure equation system will then be 

(30) 
By substituting the different preconditioners into equations (16) and (13, the equation system 
which is finally solved is 

P-'CA-'Bx, = P-'(CA-'b, - b,). 

P-'CA-'Bx, = P-'(CA-'b, - b,), 

N-'Ax, = N-'(b, - Bx,). 
(3 1) 

(32) 

NUMERICAL RESULTS 

The test problems for evaluating the different algorithms are shown in Figure 3. For the Stokes 
equations channel flow is considered and for the Navier-Stokes equations driven cavity flow is 

a : u = ug( 

6 : u = 0.1' 

a :  IL = 0.1. = 0 
6 : u = 0. t *  = 0 

aU 
0, V a : - =  

an 
b : u = O,v = 

1 - yZ)*  c = 0 
= ro 

a : u = 0, v = 0 
b : u = 0 , v  = 0 

Y * V  

= O  

0 

2 ,  U 

Figure 3. Boundary condtions for the two-dimensional test problems. The boundary contions 'a' are the boundary 
conditions for channel flow for the Stokes equations. The boundary conditions 'b' are the boundary conditions for the 

non-linear cavity flow problem described by the Navier-Stokes equations 
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Table I. Amounts of work, expressed as number of multiplications x executed in the different parts 
of the algorithms for different size grids. The first column shows the grid size. The second column shows 
the work in the factorization of the preconditioning matrix M-'. This amount of work is the same as for 
factorizing both N - '  and P-'. The other columns show the work for the different matrix-vector 

multiplications and preconditioners 

~ ~~ 

4 x 4  58 5 5 3 3 0 0 
8 x 8  225 16 19 12 13 4 1  0 
16 x 16 892 68 74 48 52 20 1 
32 x 32 3553 268 293 190 201 78 7 
64 x 64 14176 1069 1167 757 824 312 29 

computed. The boundary conditions for the different flow problems are also shown in Figure 
3. The pressure has not been specified anywhere, or normalized in any other way in the grid, 
in order to get a unique solution. Iterative solvers do not need such a specification, since this 
is provided by the initial start vector. In all cases the start vector was x,, = M-lb. In Table I 
the amounts of work for the different kinds of computational operations involved in the 
algorithms are given. The work is given in terms of the number of multiplications. The total 
work for solving the Stokes equations with the incomplete coupled fill-in is 

w t  = WPN + 2n(wQ + WM), 

w t  = WPNfio + 2no[(wp + WCB) + 2 n i ( w N  + WA)] 

(33) 

where n is the number of linear iterations. For the reduced equation system the total work is 

(34) 

where ni is the number of inner iterations and no is the number of outer iterations; ii, = 1 for 
the Stokes equations and fi, = no for the Navier-Stokes equations. When the reduced equation 
system is not preconditioned, wpN = wp = wN = 0. 

In Table I1 the numbers of iterations are given for solving the Stokes equations with different 

Table 11. Numbers of inner and outer iterations with and without preconditioning for solving the Stokes 
equations. In the second column the number of iterations with coupled node fill-in preconditioning of the 
original equation system is shown. The numbers of outer and inner iterations are given in the next columns. 
The number of inner iterations given is an average. However, the number of inner iterations for each outer 
iteration deviates only by a few iterations from the mean number of iterations. The convergence criterion 

is E, = for the outer iterations 

Reduced, E, = Reduced, E, = 
preconditioned not preconditioned 

Original 
Grid preconditioned Outer Inner Outer Inner 

4 x 4  
8 x 8  

16 x 16 
32 x 32 
6 4 x 6 4  

9 
19 
44 

136 
448 

7 8 17 24 
8 13 21 49 
9 28 24 83 

10 57 25 155 
11 93 26 317 
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grid sizes. The second column shows the number of iterations by solving the original equation 
system. The third and fourth columns show the numbers of outer and inner iterations respectively 
when preconditioning the reduced equation system. In order to obtain convergence of the 
unpreconditioned reduced algorithm for the Stokes equations, the convergence criterion for the 
inner iterations had to be reduced by a factor of 10. In addition, a restart had to be performed 
during the inner iterations. The 16 x 16 grid was restarted every 20th iteration, the 32 x 32 grid 
was restarted every 40th iteration and the 64 x 64 grid was restarted every 80th iteration. For 
the preconditioned and unpreconditioned reduced algorithms the remarkable result is that on 
refining the grid by a factor of two, the number of outer iterations is only increased by one both 
for the preconditioned algorithm and on the three finest grids for the unpreconditioned 
algorithm. In Table 111 the amounts of work required by the three algorithms are given. It is 
seen that preconditioning of the original equation system is by far the most efficient algorithm 
in terms of work compared with the preconditioned reduced equation system algorithm. The 
preconditioned reduced algorithm is again more efficient than the unpreconditioned reduced 
algorithm. 

In Table IV the numbers of iterations for obtaining convergence of the preconditioned reduced 
equation system are given for different convergence criteria of the inner iterations. These results 

Table 111. Total amounts of work, expressed as number of multiplications x lo-’ for the three methods, 
i.e. original system preconditioned, reduced system preconditioned and reduced system without pre- 

conditioning, for solving the Stokes equations in two dimensions 

Grid 
Original Reduced Reduced 

preconditioned preconditioned not preconditioned 

4 x 4  
8 x 8  

16 x 16 
32 x 32 
64 x 64 

148 
1555 

13388 
158389 

2017632 

1402 
10689 

102070 
910413 

6491130 

4096 
50064 

383424 
2948900 

24973000 

Table IV. Numbers of inner and outer iterations for the Stokes equations with different convergence criteria 
E, for the inner iterations. The outer convergence criterion is E~ = for all iterations. Both the outer 
and inner iterations are preconditioned. The number of inner iterations is an average. A ‘dash’ indicates 

that the solution did not converge 

4 x 4  8 x 8  16 x 16 32 x 32 64 x 64 
Grid 

E, Outer Inner Outer Inner Outer Inner Outer Inner Outer Inner 

69 10-3 8 5 
10-4 7 6 8 11 11 23 47 45 > 100 87 
1 0 - 5  7 8 8 13 9 28 10 57 11 93 
10-6 7 9 8 15 9 32 10 62 11 116 
10-7 7 9 8 17 9 35 10 68 11 125 
10-8 7 10 8 19 9 37 10 74 11 138 

- 38 - 20 - 9 - 
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Figure 4. Solution of the Navier-Stokes problem for driven cavity flow in terms of velocity vectors for a 16 x 16 grid 
and Reynolds number 300 

show that the outer iterations converge if the convergence criterion for the inner iterations is at 
least one order below the convergence criterion for the outer iterations. However, this relation 
between the two convergence criteria seems to be a sufficient condition for the Stokes equations. 
In Figure 4 the solution of the two-dimensional Navier-Stokes equations for the cavity flow is 
shown. In Table V the numbers of linear iterations are given for each Newton iteration for 
solving the Navier-Stokes equations. For comparison the numbers of outer and inner iterations 
for each Newton iteration for solving the reduced Navier-Stokes equations for the cavity 
problem are given in Table VI. When solving the reduced Navier-Stokes equations, the 
preconditioning using the Stokes equation matrix was not sufficient to obtain convergence. At 
each Newton step the preconditioning matrix used was equal to the equation matrix and a new 
incomplete factorization had to be performed at each step. The work used in recomputing the 
ILU factorization at all Newton steps is less than 10% of the total iterative work. In addition, 
to avoid stagnant solutions, the convergence criterion for the inner iterations had to be lowered 
to E, = lo-’. For the 32 x 32 grid the inner iterations were restarted every 300th iteration and 
for the 64 x 64 grid restarts were performed every 1000th iteration. By inspection of the 
individual inner iterations it was observed for both the 32 x 32 grid and the 64 x 64 grid that 
for some inner iterations the restarts occurred too often and for some inner iterations too seldom. 
In some outer iterations the inner iterations were restarted as often as five times. The error 
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Table V. Numbers of iterations for solving the original Navier-Stokes equations with preconditioning in 
two dimensions for Reynolds number 300. For the original equation system the numbers of Newton and 
linear iterations are given. The convergence criterion for the Newton iterations is E, = The solution 

of the original equation system was restarted every 60th iteration 

Grid Newton Linear 

8 x 8  6 16 45 42 53 64 49 
16 x 16 6 60 71 95 117 100 96 
32 x 32 6 107 334 222 278 240 318 
64 x 64 6 375 824 1137 1390 516 978 

Table VI. Numbers of iterations for solving the reduced Navier-Stokes equations with preconditioning in 
two dimensions for Reynolds number 300. For the reduced equation system the numbers of Newton, outer 
and inner iterations are given. The number of inner iterations is an average of the number of inner iterations 
for all outer iterations. For the inner iterations the convergence criterion was E, = lo-’ and for the outer 

iterations cp = 

Grid Newton Outer Inner 

8 x 8  6 1 1  27 29 39 43 43 21 
16 x 16 6 12 38 31 86 92 44 76 
32 x 32 6 13 57 64 71 82 77 422 
6 4 x 6 4  6 14 70 92 107 113 91 1311 

history in the solution vector shows that this is too often. In other inner iterations the error 
history shows a stagnant solution before restarts occur. This way of performing restarts at 
constant restart intervals is obviously not an efficient restart algorithm. For the 32 x 32 grid 
this probably led to more inner iterations than were necessary to obtain convergence. 

In Table VI the number of inner iterations is given as an average of the number of inner 
iterations for all outer iterations. The iterative equation solver was restarted every 300th iteration 
for the 32 x 32 grid and every 1000th iteration for the 64 x 64 grid. The high number of inner 
iterations for both the 32 x 32 and 64 x 64 grids is probably because these iterations were 
restarted too often. The amounts of work in solving the original and the reduced Navier-Stokes 
equations are given in Table VII. The method of solving the original equation system is again 
the most efficient. 

Table VII. Total amounts of work, expressed as number of 
multiplications x low3,  for the original and reduced solution 
methods with preconditioning of the Navier-Stokes equations 

in two dimensions for Reynolds number 300 

Grid Original Reduced 

8 x 8  
16 x 16 
32 x 32 
64 x 64 

~~ 

19 
163 

1685 
23358 

~~ 

543 
9211 

245223 
4094670 
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DISCUSSION 

A different inner-outer algorithm where the pressure is solved by a preconditioned iterative 
method is presented by Vincent and B ~ y e r . ’ ~  Their preconditioner of the outer equation system 
is based on a stabilization matrix constructed from a ‘penalty formulation’ or ‘local jump 
formulation’. The resulting preconditioning matrix is block diagonal and is inverted block-by- 
block. The inner equation system is solved by a Cholesky decomposition, although they suggest 
that it can be of major interest to solve the inner equation system iteratively. The construction 
and use of their preconditioner for the outer iterations require little work, but it is difficult to 
judge whether the total amount of work in solving the outer equation system is favourable 
compared the method presented here. However, one is tempted to believe that a preconditioner 
based on an aritificial ‘penalty’ or ‘jump’ matrix would exhibit poorer convergence properties. 

In the present work a new preconditioned algorithm for solving the Navier-Stokes equations 
has been developed. This algorithm consists of inner-outer iterations. It has been shown that it 
is possible to solve both the Stokes and the Navier-Stokes equations with iterative equation 
solvers working inside each other. The solution method is shown to be speeded up by 
preconditioning. Both the inner and outer iterations are preconditioned by ILU factorization 
with coupled node fill-in. This way of solving and preconditioning the Navier-Stokes equations 
has been made possible by the special storage scheme, where the velocity coefficients, the pressure 
coefficient and the coupling between the pressure and velocity matrices are stored separately. 

The results of these investigations show that the coupled node fill-in preconditioning algorithm 
of the original equation system22 is superior to the preconditioned inner-outer algorithm. 
However, some interesting properties of the preconditioned inner-outer algorithm need to be 
pursued. When the grid is refined by a factor of two when solving the Stokes equations, it is 
rather remarkable that the number of outer iterations is only increased by one. 

As the grid is refined when solving the Navier-Stokes equations, the numbers of outer 
iterations is reduced in two of the Newton iterations for the 32 x 32 grid compared with the 
16 x 16 grid. For the 64 x 64 grid the increase in the number of outer iterations in the non-linear 
iterations is relatively small compared with the first Newton iteration. This is not unexpected, 
since the viscous term becomes more dominant compared with the convective term with 
decreasing size of the elements. The equation matrix A for the Newton formulation of the 
Navier-Stokes equations may be considered as the sum of a part A, which consists of the 
Laplacian operator and a part A, arising from the non-linear term of the differential system, 
i.e. A = A, + A,. If h is a one-dimensional parameter describing the size of the elements, then 
we may consider A, as a perturbation of order h of A,. Hence for small h we can expect the 
matrix CA-’B to behave similarly to the corresponding matrix for the Stokes problem, CA, ‘B. 
The number of inner and outer iterations for the Navier-Stokes equations should then approach 
the number of outer iterations for the Stokes equations. 

During the inner iterations it is important that the iterations are restarted only when necessary. 
If the iterations are restarted too often, all the information from the previous iterations is lost 
and the number of iterations is increased unnecessarily. If the iterations are restarted too seldom, 
the solution may become stagnant and superfluous iterations may be performed. The sufficient 
and necessary condition for performing a restart is that a restart should take place only when 
the solution becomes stagnant. Efforts are now being made to obtain a criterion for a stagnant 
solution and then to develop an automatic restart algorithm. 

For the Stokes equations the inner iterations consist of solving an equation system with the 
Laplacian operator. An efficient means of solving an equation system consisting of the Laplacian 
operation has been shown to be multigrid methods.25 In future work multigrid methods will 
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therefore be explored for solving the inner equation system for the Stokes equations and for 
either solving or preconditioning the inner equation system for the Navier-Stokes equations. 
By combining a multigrid method with preconditioned iterative equation solvers, it is believed 
that a very efficient implicit Navier-Stokes equation solver can be obtained. 
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